

Implementation of the Standard Analysis Environment (SAE)

James Peachey
(HEASARC/GLAST SSC—GSFC/L3)

Overview of the SAE

- SAE is the set of software which will be available to guest investigators for analyzing GLAST data
- LAT and GSSC teams are working together to develop SAE
- Two communities will be served by a single software analysis environment
 - Astronomy community:
 - Prefer well defined tools, scripts, cookbooks
 - Familiar with Ftools, Xspec, etc.
 - Interested in multi-mission analysis
 - High energy community:
 - Prefer tool kit from which to write own custom tools
 - Familiar with CLHEP, Root, etc.
 - Prefer object-oriented development frameworks
 - Both:
 - Want to reuse familiar tools
 - Want new tools to behave similarly to familiar tools

SAE Development Goals

- The goal is to develop a software system which...
 - Is scientifically valid and complete
 - Meets the needs of its users
 - Is supportable and maintainable by GSSC and HEASARC
 - Is of high quality
 - Is delivered on time

Development Timetable

- The GLAST mission timetable includes three "mock data challenges" prior to the launch:
 - Data Challenge 1 took place December 2003 March 2004
 - SAE prototypes evaluated
 - Requirements refined
 - Data Challenge 2 planned for spring, 2005
 - Software will be provided in mature, albeit incomplete form
 - Data Challenge 3 planned for spring, 2006
 - Software will be very close to final form (beta release)
 - Launch will be February, 2007
 - First public release available
- This suggests two major development cycles of about one year each followed by a shorter cycle for refinements

Meeting Needs of Users

- Support for analyzing GLAST data with existing tools
 - Conventional, OGIP compliant file formats
- Support for analyzing other missions with GLAST software
 - Whenever possible, software will be multi-mission
- Look and feel of SAE applications will be similar to existing tools
 - Ballistic Ftools-like interface and behavior whenever possible and appropriate
- Documentation
 - Developers are writing documentation as they go
 - LAT team has professional technical writers
- Ease of use
 - LAT team working on easy installation procedures
 - Plan for GUIs and data visualization capabilities layered on top of applications

SAE Technologies

- Languages
 - C++ (ANSI/ISO standard compliant)
 - Python (Scripting, GUIs)
- Software Packages
 - Cfitsio (FITS file access)
 - PIL (SAO host-conforming parameter interface for user input)
 - WCS (Coordinate transformations)
 - HEADAS (FITS utilities, support libraries, and container for the above libraries)
 - Root (Data visualization, GUIs)
 - CLHEP (Mathematical utilities)
- Development Platforms
 - Intel Linux, GNU compilers
 - MS Windows, Visual Studio compiler
- Supported Platforms
 - Planned support for same Unix platforms as HEASARC software

Development Methodologies

- Short, iterative build cycles
 - Ensures that most important features are added first
 - Allows flexibility in schedule for unanticipated issues
 - Provides natural points for internal test releases
 - Frequent feedback keeps development on course
- Unit tests developed first in each build cycle
 - Provides metric for progress
 - Promotes more robust software
 - Allows changes to be made with confidence
- Modular, object oriented design
 - Individual applications are small, consisting of well-defined interactions between a small number of loosely coupled objects

Quality Assurance

- Testing
 - Unit tests developed concomitantly with the code
 - Time allotted prior to each data challenge and launch for system and integration testing
- Coding standards have been established by the LAT team
- Code reviews are being organized by the LAT team
 - Identifies discrepancies between requirements and actual code behavior
 - Checks for adherence to coding standards
 - Provides feedback regarding usability

Summary of State of SAE

- High level design phase of SAE was completed, now entering implementation phase
- A realistic development schedule which meets the requirements in a timely manner has been created and is being followed
- Ample resources are being deployed to ensure software fulfills its requirements

Appendix: Summary of SAE Development Schedule

	DC1	DC2	DC3	Launch
Likelihood Analysis	Unbinned analysis	Some binned analysis	Full binned, unbinned analyses	Refinements and integration
Pulsar Analysis	-	Write timing info, basic period search	Full period search	Refinements and integration
GRB Analysis	Prototypes	Support for standard analysis	Advanced multi-dimensional analysis	Refinements and integration
Catalog Analysis	-	Framework and common cats, bkgnd model	All required catalogs, refinements	Refinements and integration
Obs Simulation	Simple sources, bursts	Pulsars, AGN	Refinements	Refinements and integration
User Interface	-	Basic data visualization, basic GUIs	Scripting, advanced visual/GUIs	Refinements and integration
General Utilities	Common database access	More DB access, data selection	Refinements	Refinements and integration